
H i s t o r i e s  &  F u t u r e s

are about as relevant to real robotics as leechcraft is to mod-
ern medicine. Yes, before anyone writes me smug emails, I
know that leeches are very useful in modern medicine, but I
said “leechcraft.” Leeches might be useful, but the para-
digm of thought that originally led to their use is a ridicu-
lous anachronism.

The same is true for Asimov’s laws. Of course, he in-
vented them as a plot device, useful precisely because of
their many paradoxes and faults. Nevertheless, they belong
to a bygone age: a world created by Boole and Babbage, in
which people seriously thought that intelligence was some
form of logical calculus. At the time, it seemed reasonable
that we could give a robot explicit rules for every aspect of
its behavior. We could “program” it to recognize when it
was in danger of breaking any laws and could guarantee 
it wouldn’t “break its programming” by doing anything
wrong. Within a few years of Asimov’s stories, the digital
computer had been invented and people seriously set to
work trying to program in such rules for intelligence. 

How quaint! Luckily nobody believes this nowadays.
Or do they? 

Traditional AI: Intelligence not required 
Explicit symbolic logic has faded from prominence, but

the close coupling of AI and the digital computer, and of
thought and the stepwise algorithm, seem about as strong
and unquestioned as ever.

Of course there’s connectionism, but this too is mired in
false assumptions that date back a long way. And it seems
to have dragged neuroscience down with it to the extent
that we now seem unable to think about real brains without
resorting to models that owe too much of their inspiration
to the three-layer perceptron. Brains really aren’t like that.

Traditional AI has excelled at solving certain kinds of
problems. It can build machines that play chess but not

ones that can pick up the pieces when they fall over. It can
create machines that read text but not ones that can recog-
nize objects from arbitrary angles. It can make systems
that learn but not in any generally applicable way. 

This isn’t a criticism—traditional AI mostly follows John
McCarthy’s dictum that AI is about making machines do
what humans use intelligence to do, and often this doesn’t
actually require the machines to show any intelligence at
all. But for many tasks, especially in robotics, the ability to
see, learn, and perform complex motor actions is a prereq-
uisite that the traditional approach has utterly failed to ful-
fill. If robots are any kind of a threat to humanity, it’s only
because they tend to be heavy and fall over a lot. Even if a
machine could contemplate murder, it wouldn’t be able to
pick up the knife or locate the victim.

In search of AI’s periodic table
The New AI fares a little better at solving some of these

supposedly lower-level tasks. But where good old-fash-
ioned AI was inspired by the logical thought processes of
advanced mathematicians, New AI is inspired by the ner-
vous systems of the simplest invertebrates (and no, that’s
not the same thing). The snag is that these extreme bot-
tom-up and top-down approaches don’t meet in the mid-
dle. There’s a huge gulf precisely where the interesting
behavior lies. Neither approach tells us much about how
to make machines that can perceive or make complex
movements in the way that even the most primitive mam-
mals can, yet these are the very competencies that robots
so desperately need. Despite what some people seem to
assume, you can’t simply combine techniques from both
approaches. A human being is not an ant with a natural
language interface.

AI currently stands in relation to real intelligence much
as alchemy once did to chemistry. Without alchemists, we’d
never have developed chemistry, so I mean no insult by this.
But until the discovery of the periodic table, everyone was
essentially stabbing in the dark. Fundamentally, what we’ve
learned over the past 50 years is a lot about how not to build
intelligent machines, but we still haven’t made the critical
breakthrough. There’s one class of machine that we know

The other day, it was my turn to answer stupid ques-

tions about the movie I, Robot. “Do you think it’s

about time we started incorporating Asimov’s three laws into

real robots?” a journalist asked. I replied that Asimov’s laws
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for sure can solve all these problems of per-
ception and complex action: the mammalian
brain. But we simply don’t know its funda-
mental operating principles (although I’m
quite certain it has some). We have no peri-
odic table of neural function to help us see
the underlying logic. Turing machines and
neural networks were hopeful candidates for
a theory of intelligence, but they simply
don’t cut the mustard. 

Because of how science works, we have 
a tendency to hop on bandwagons, for the
most part making only incremental improve-
ments to ideas that already exist. But a beauti-
fully polished and optimized bad idea is 
still a bad idea. The digital computer was
inspired by one abstract view of the thought
process, but it turns out to have been the
wrong one as far as general intelligence is
concerned. Connectionists tried to pay more
attention to the neural hardware, but they did
so within a paradigm drawn from electronic
circuitry, causing them to make rash assump-
tions about the roles of nerve cells and syn-
apses. Neither approach has worked, so we
should abandon these paradigms and look
for other models. What we need are new and
radical ideas at the most fundamental level.

Po statements
Edward de Bono, the champion of lateral

thinking, has a technique that he calls “Po.”
It involves making deliberately provocative
statements (“the best place to sell ice cream is
the North Pole”) to shake us out of our pre-
conceptions and find new paths. Suppose de
Bono were to take up AI. What kinds of Po
statements might he make?

I really couldn’t say, but the following
are some of the deliberate provocations that
stimulate my own research. To my mind,
they’re nowhere near as radical as marketing
ice cream to Eskimos, although some might
think so. Nevertheless, I think they’re suffi-
ciently misaligned with established wisdom
to suggest interesting new directions. I ask
you to treat them in the spirit of Po: not as
something to criticize but as ideas to run with
just to see where they might lead.

Po 1: Brains exist to compensate 
for the slowness of nerves 

AI sometimes has a terrible tendency to
treat intelligence as a reactive, even passive,
process. New AI has a particular mistrust of
internal models and top-down mechanisms,
arising from a justifiable disenchantment
with symbolic representation. But for ani-

mals larger than a pinhead, prediction is an
essential part of intelligent behavior, and
reactive solutions simply won’t do. Turning
your eyes toward the point where a fast-
moving object was when the light from it
hit your retina will cause you to miss it by
miles. Worse still, waiting until after the
lion has actually eaten you isn’t the best
time to think about a response. 

This principle applies universally. Indeed,
perhaps an animal’s intelligence is by defini-
tion proportional to its degree of predictive
power. Relatively primitive animals live for
the moment, but even they must be able to
extrapolate their prey’s movements or pre-
dict a social rival’s likely response. Humans
can form predictions many years into the
future or many steps into a tree of possibili-
ties. Intelligence is all about prediction.

Brains exist fundamentally to ask “What
next?” and, in some animals, “What if?”

Both questions imply a mental model of
the world—not a symbolic model or even
an explicit one, but a model nonetheless.
Without some means of fast-forwarding the
present, it’s impossible to anticipate the
future, especially when that future is highly
conditional. Extreme reactivists might dis-
agree with this, but finding reactive alterna-
tives often requires absurd contortions and
flies in the face of a large body of evidence.
Thinking about where and how the brain
could develop, store, and use such a model
or models can be a remarkably productive
exercise when freed from any historical
baggage. Furthermore, it can suggest unify-
ing principles that extend from simple re-
flexes right through to conscious imagery.

Po 2: Brains don’t make decisions
Brains simply try to reduce the tension

between how things are and how we expect
or would like them to be.

AI has shown a lamentable tendency to
slide from reasonable observations to over-
stylized, formal solutions. Of course brains
make decisions, but it doesn’t follow that
there’s an explicit decision-making mecha-
nism in the brain in the sense used in action-
selection networks, for example. Much of
what the brain does requires analog—“left
hand down a bit”—kinds of responses and
yet so many AI techniques (and quite a lot of
behaviorist psychology) presume that deci-
sions are all-or-nothing, discrete choices.

The brain must contain an anticipation of
the world’s future state to act in good time,
and to construct this, it must also have a rep-
resentation of the present (or more strictly
the recent past) produced by the senses. So,
at any one moment, the brain contains two
complex vectors: one pattern of nerve activ-
ity representing how things are, and the other
representing how things might be soon. It
makes good neurological and psychological
sense to assume that these two state vectors
map onto the same brain territory. If so, the
two can be directly compared point for point,
and the comparison can yield useful conse-
quences. My present research started with
the assumption that brains are in essence
arrays of servomotors—each comparing one
pair of “values” from the two state vectors
and producing an output designed to reduce
the difference between them, either by dri-
ving muscles or by becoming the “intention”
value for another servo in the network.

When you think about it, an intention is a
kind of prediction about how the world will
look if things go as planned. The difference
between how things are now and how we
would like them to be tells us something
useful about what we need to do. Our goal
is to bring the state of the world in line with
our prediction, which requires us to perform
a servo action. But equally, sometimes we
need to bring our predictions back in line
with reality. This is what happens when we
update our beliefs in light of new informa-
tion. Beliefs, hypotheses, expectations, atten-
tions, plans, and intentions all become the
same thing when seen in this light.

Po 3: Brains perform coordinate
transforms

If brains are networks of servos, each
servo must operate in a particular coordi-
nate space (for example, retinotopic, soma-
totopic, or tonotopic), and the links between
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them must therefore carry out a conversion
from one space to another. If something that
we see is to have an effect on what we do,
then it follows that information mapped in
retinal coordinates eventually must produce
changes in the brain that are mapped in
muscle coordinates. 

The more I think about this principle, the
more I find that we can describe other kinds
of mental process as coordinate transforms
too—even object recognition and abstract
symbol manipulation. One especially inter-
esting example might explain how we can
recognize shapes by sight or touch, regard-
less of their scale, rotation, and position on
the visual field or the skin. Such invariance
is easily the most striking and challenging
aspect of perception (and, indeed, of motor
action). Without the ability to replicate this
property, we have no hope of making robots
that can see like animals do.

So, is there a coordinate frame in which a
banana, for the sake of argument, looks
exactly the same shape, regardless of its posi-
tion, orientation, and scale? Yes. It’s a rather
abstract frame, but try this: Imagine the
image of a banana falling on your retina.
Now mentally project yourself until you are
inside the banana, looking outward. What
you have just performed is a conversion from
eye-centered coordinates into banana-cen-
tered coordinates. From inside, the banana
remains exactly the same shape, regardless of
its location and orientation with respect to
your original viewpoint. So if brains can per-
form on-the-fly transforms from egocentric
to object-centered coordinate space, they
have the means to develop visual invariance.

Exactly how this might happen is an
unsolved problem, but it’s something I’ve
been working on with a modicum of suc-
cess—enough to suggest that it’s a mean-
ingful idea. Significantly, if a general mech-
anism can be found, it’ll bring the two key
visual data streams (the “where” pathway
of the parietal lobes, and the “what” path-
way of the temporal lobes) into a common
level of explanation.

Po 4: Nervous tissue is 
a new state of matter

The more I think about concepts such as
servos and coordinate spaces, the more irrele-
vant the traditional view of the neuron seems
to become. The stereotypical neural network
is a sparsely connected, discrete signaling
system, but real neurons are nothing of the
kind. They’re so densely interconnected and

leaky that an unbiased appraisal of the facts
would suggest that nervous tissue is more like
a wobbly jelly than a printed circuit board.
Signals spread out rapidly, and large-scale
phenomena such as waves build up on the
neural surface. Yet at the same time, neurons
have the ability to make changes to signal
propagation on a very fine scale. It seems to
me that nervous tissue is a substance with
some of the properties of a discrete network
of wires and some of a continuous solid.

On such a medium, patterns of nerve activ-
ity need to be interpreted differently than in
conventional models based on very small
networks. Perhaps it isn’t the neurons that
perform the computations in the brain at all.
Perhaps they provide the surface upon which
the patterns of nerve activity perform compu-
tations (see Steven Lehar’s “Harmonic Reso-
nance Theory” at http://cns-alumni.bu.edu/
~slehar/webstuff/hr1/hr1.html for one inter-
pretation of such second-order computation).
You wouldn’t learn anything about the behav-
ior of the Niagara Falls by studying a handful
of water molecules, so it seems ridiculous to
try and mimic nervous systems using simula-
tions built from 16 neurons. If the scale of
activity is as large as I suspect, we simply
won’t be able to see the wood for all the trees.

Po 5: The more complex the robot, 
the easier it is to make progress

A similar argument about scale applies to
robots and to the segregation of disciplines
in AI. Toy environments are often far too
stylized and reduced to capture the essential
features of a problem, and with robots, that’s
especially true. How intelligent would you
have become if you’d been born equipped
with only two wheels and a handful of bump
sensors?

But there are other reasons to think big.
Hearing, seeing, planning, and moving seem
on the surface to be radically different prob-
lems, and yet the brain tissues involved in
each of these processes are fundamentally
similar. Motor cortex looks slightly different
from primary visual cortex, but the essential
architecture is the same and most of the dif-
ferences are likely to be a consequence of
adaptation. So if the same brain architecture
can perform all these different tasks, there
must be a level of description at which
they’re the same task.

Moreover, so much of development and
learning is multimodal. How can we learn
to see depth unless we have the ability to
reach out and touch things to confirm how

far away they are? How can we learn to
reach out and touch things unless we can
see their depth? Learning is a process of
integration, correlation, and confirmation
between all the senses and motor systems
at once, so we need to study them together.

Lucy: Building a somebody
So, to help me develop my Po ideas about

possible new neural computing architectures,
I decided to build as complex a robot as my
limited resources would allow (see Figure 1).
Her name is Lucy, and she’s ostensibly a
robot orangutan, although the similarity is
minimal because I’m not much of an artist.
Nevertheless, I gave her a face and refer to
her as “her” rather than “it” to remind me
that I’m trying to make a somebody, not a
something—a complete integrated organism. 

Physically, she has vision, hearing, pro-
prioception, a virtual model of the vocal
tract, and enough degrees of freedom to
make movement a challenge. My goal is to
build Lucy a brain from scratch, facing the
same problems that nature must have faced,
armed with the same tools and equipment
(as far as I can manage). What I’m trying to
find is a common level of description that
marries all the apparently disparate tasks
that brains carry out. I’m essentially on the
lookout for a protomachine: a generalized
neural architecture that can spontaneously
self-organize into a variety of specialized
machines, driven only by the nature of the
signals supplied to it.

So far, Lucy’s only party trick is that she’s
learned how to point at bananas. I hold up an
apple and a banana and she can point at the
banana. Impressive, huh? And all that this
feat requires is a neural network composed 
of around 50,000 complex neurons. Not the
most efficient way to recognize a banana,
when “point at the yellow bit” would suffice.
But I don’t care, because I’m only using digi-
tal computers as an interim solution. My aim
is to find radically new kinds of computing
devices that work more like I think brains do. 

Lucy’s virtual brain is composed of a
series of neural surfaces, each performing
a different aspect of looking, recognizing,
or pointing toward things. The important
point is that all these surfaces have a lot in
common, despite the differences in their
function. At some level, we can describe
each as a servomotor, which performs
some sort of coordinate transform and
computes its results using the properties of
large-scale patterns of nerve activity. 
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There’s an awfully long way to go until
these ideas gel into a unified and powerful
mechanism capable of being used in real
applications. But all adults start out as babies,
and I don’t see any reason why AI should be
different. I’m convinced that there is such a
universal architecture for creating mammal-
like general intelligence and that this bears
little resemblance to existing neural networks
and none whatsoever to the concepts underly-
ing the digital computer. Until we find such a
radical new way forward, I don’t think we’ll
ever build robots for which Asimov’s three
laws of robotics have the slightest relevance.

I’d like to point out that I’m sure many of
the ideas I’ve outlined have already been
proposed in some form by other researchers.

If so, I apologize for not citing them. My
aim isn’t to plagiarize; it’s simply that I pay
no attention to the literature. One of the best
ways to kill off a promising line of thought
is to say, “Well, I know that so-and-so tried
that in 1978 and it didn’t work.” In reality,
the likelihood is that so-and-so didn’t have
exactly the same ideas in mind, wasn’t
thinking about them in precisely the same
way, and wasn’t driven by quite the same
motives, so it’s better not to know.

I’ve no doubt Edward de Bono would
agree that most breakthroughs arise when
people doggedly plow their own furrow,
unknowingly attempting things that wiser
people “know” to be impossible. Ignorance
can therefore be a huge asset, and as an
unfunded amateur, I have no obligation to
stick to the rules and etiquette of profes-
sional science, so the less I know about
other people’s ideas, the better. In fact, if I
were you, I wouldn’t be reading this article

at all—it would only color my thoughts
and reduce the potential for novelty. But
perhaps the final paragraph wasn’t the ideal
place to mention this.
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Figure 1. (a) Lucy Mk. I; (b) Lucy Mk. I staring at patterns on a computer screen while her visual cortex spontaneously organizes
itself into an orientation detecting system (as seen in the “brain scans” on the right-hand monitor); (c) Lucy Mk. II.  

(a) (c)

(b)
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